丫丫电子书 >> 玄幻魔法 >> 死在火星上TXT下载 >> 死在火星上章节列表 >> 死在火星上最新章节

对火星轨道变化问题的最后解释

作者:天瑞说符 下载:死在火星上TXT下载
    作者君在作品相关中已经解释过这个问题,并在此列出相关参考文献中的一篇开源论文。

    以下是文章内容:

    Long-termintegrationsaaryorbitsinourSolarsystem

    Abstrac

    Wepresenttheresultsofverylong-termnumericaliaryorbitalmotionsover109-yrtime-spansincs.Aquickinspectionofournumericaldatarymotion,atleastinoursimpledynamicalmodel,seemstobequitestableevenoverthisverylongtime-span.Acloserlookatthelowest-frequencyoscillationsusingalow-passfiltershowsusthepotentiallydiffusivecharacterarymotion,especiallythatofMercury.ThentricityofMercuryinourintegrationsisqualitativelysimilartotheresultsfromJacquesLaskar'ssecularperturbationtheory(e.g.emax∼0.35over∼±4Gyr).However,therearenoapparentsecentricityorinclinationinanyorbitals,whichmayberevealedbystilllonger-termnumericalintegrations.Wehavealsoperformedacoupleoftrialintegrationsincludingmotionsosoverthedurationof±5×1010yr.TheresultindicatesthatthethreemajorresonancesintheNeptune–Plutosystemhavebeenmaintainedoverthe1011-yrtime-span

    1Introduction

    1.1Definitionoftheproblem

    ThequestionofthestabilityofourSolarsystemhasbeendebatedoverseveralhundredyears,sincetheeraofNewton.Theproblemhasattractedmanyfamousmathematiciansovertheyearsandhasplayedacentralroleinthedevelopmentofnon-lineardynamicsandchaostheory.However,wedonotyethaveadefiniteanswertothequestionofwhetherourSolarsystemisstableornot.Thisispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenitisusedinrelationtarymotionintheSolarsystem.Actuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofourSolarsyste

    Amongmanydefinitionsofstability,hereweadopttheHilldefinition(Gladman1993):actuallythisisnotadefinitionofstability,butofinstability.Wedingunstablewhenurssomewhereinthesystem,startingfromacertaininitialconfiguration(Chambers,Wetherill&Boss1996;Ito&Tanikawa1999).AsystemisdefinedasexperiencingacloseencounterwhentwobodiesapproachoneanotherwithinanareaofthelargerHillradius.Otherwisethesystemisdefinedasbeingstable.HenceforwardwarysystemisdynamicallystableifnocloseencounterhappensduringtheageofourSolarsystem,about±5Gyr.Incidentally,thisdefinitionmaybereplaceurrenceofanyorbitalcrossingbetweeneistakesplace.Thisisbecauseweknowfromexperiencethatanorbitalcrossingisverylikelytoleadtoacloaryandarysystems(Yoshinaga,Kokubo&Makino1999).OfcoursethisstatementcannotbesimplyappliedtosystemswithstableorbitalresonancessuchastheNeptune–Plutosyste

    1.2Previousstudiesandaimsofthisresearch

    Inadditiontothevaguenessoftheconceptofstability,sinourSolarsystemshowacharactertypicalofdynamicalchaos(Sussman&Wisdom1988,1992).Thecauseofthischaoticbehaviourisnowpartlyunderstoodasbeingaresultofresonanceoverlapping(Murray&Holman1999;Lecar,Franklin&Holman2001).However,itwouldrequireintegratingovearysystemsincsforaperiodcoveringseveral10Gyrtothoroughlyunderstandthelong-tearyorbits,sincechaoticdynamicalsystemsarecharacterizedbytheirstrongdependenceoninitialconditions

    Fromthatpointofview,manyofthepreviouslong-termnumericalintegrationsincludedonls(Sussman&Wisdom1988;Kinoshita&Nakai1996).Thisisbecausetheorbitalperisaresomuchlongerthanthoseosthatitismucheasiertofollowthesystemforagivenintegrationperiod.Atpresent,thelongestnumericalintegrationspublishedinjournalsarethoseofDuncan&Lissauer(1998).Althoughtheirmaintargetwastheeffectofpost-main-sequencesolarmasslossontaryorbits,theyperformedmanyintegrationscoveringupto∼1011yroftheorbitalmotionsofs.TheinitialorbitalelemensarethesameasthoseofourSolarsysteminDuncan&Lissauer'spaper,buttheydecreasethemassoftheSungraduallyintheirnumericalexperiments.Thisisbecausetheyconsidertheeffectofpost-main-sequencesolarmasnsequently,theyfoundthatthecrossingtime-aryorbits,whichcanbeatypicalindicatoroftheinstabilitytime-scale,isquitesensitivetotherateofmassdecreaseoftheSun.WhenthemassoftheSunisclosetoitspresentvalue,sremainstableover1010yr,orperhapslonger.Duncan&Lissaueralsoperformedfoursimilarexperimentsontheorbitals(VenustoNeptune),whichcoveraspanof∼109yr.Theirexperisarenotprehensive,butitseemsthattsalsoremainstableduringtheintegrationperiod,maintainingalmostregularoscillations

    Ontheotherhand,uratesemi-analyticalsecularperturbationtheory(Laskar1988),Laskarfindsthatlargeandirregularvariationentricitiesandinclinationsofts,especiallyofMercuryandMarsonatime-scaleofseveral109yr(Laskar1996).TheresultsofLaskar'ssecularperturbationtheoryshouldbeconfirmedandinvestigatedbyfullynumericalintegrations

    Inthispaperwepresentpreliminaryresultsofsixlong-termnumericalintegrataryorbits,coveringaspanofseveral109yr,andoftwootherintegrationscoveringaspanof±5×1010yr.Thetotalelapsedtimeforallintegrationsismorethan5yr,usingseveraldedicatedPCsandworkstations.Oneofthefundamentalconclusionsofourlong-termintegrationsistharymotionseemstobestableintermsoftheHillstabilitymentionedabove,atleastoveratime-spanof±4Gyr.Actually,inournumericalintegrationsthesystemwasfarmorestablethanwhatisdefinedbytheHillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,aryorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,arymotionsarestochastic.Sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-termstabilityarymotion.Forreaderswhohavemorespecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofDelaunayelementsandangularmomentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations

    InSection2webrieflyexplainourdynamicalmodel,numericalmethodandinitialconditionsusedinourintegrations.Section3isdevotedtoadescriptionofthequickresultsofthenumericalintegrations.Verylong-termstabilityarymotionisaarypositionsandorbitalelements.Aroughestimationofnumericalerrorsisalsogiven.Section4goesontoadiscussionofthelongest-tearyorbitsusingalow-passfilterandincludesadiscussionofangularmomentumdeficit.InSection5,wepresentasetofnumericalintegrationsfosthatspans±5×1010yr.InSection6wealsodiscussthelong-terarymotionanditspossiblecause

    2Descriptionofthenumericalintegrations

    (本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)

    2.3Numericalmethod

    Weutilizeasecond-orderWisdom–Holmansymplecticmapasourmainintegrationmethod(Wisdom&Holman1991;Kinoshita,Yoshida&Nakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(Saha&Tremaine1992,1994)

    Thestepsizeforthenumericalintegrationsis8dthroughoutallintegrats(N±1,2,3),whichisabout1/11oftheorbitalperiodo(Mercury).Asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrasinSussman&Wisdom(1988,7.2d)andSaha&Tremaine(1994,225/32d).Weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inoumulationofround-offerrorinputationprocesses.Inrelationtothis,Wisdom&Holman(1991)performednumericalintegrationsoaryorbitsusingthesymplecticmapwithastepsizeof400d,1/10.83oftheorbitalperiodofJupiter.Theirurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize.However,entricityofJupiter(∼0.05)ismuchsmallerthanthatofMercury(∼0.2),weneparetheseintegrationssimplyintermsofstepsizes

    Intheintegrationos(F±),wefixedthestepsizeat400d

    WeadoptGauss'fandgfunctionsinthesymplecticmaptogetherwiththethird-orderHalleymethod(Danby1992)asasolverforKeplerequations.ThenumberofmaximumiterationswesetinHalley'smethodis15,buttheyneverreachedthemaximuminanyofourintegrations

    Theintervalofthedataoutputis200000d(∼547yr)forthecalculats(N±1,2,3),andabout8000000d(∼21903yr)fortheintegrationos(F±)

    Althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwepletedallthecalculations.SeeSection4.1formoredetail

    2.4Errorestimation

    2.4.1Relativeerrorsintotalenergyandangularmomentum

    Accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors.Theaveragedrelativeerrorsoftotalenergy(∼10−9)andoftotalangularmomentum(∼10−11)haveremainednearlyconstantthroughouttheintegrationperiod(Fig.1).Thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore

    RelativenumericalerrorofthetotalangularmomentumδA/A0andthetotalenergyδE/E0inournumericalintegrationsN±1,2,3,whereδEandδAaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,andE0andA0aretheirinitialvalues.ThehorizontalunitisGyr

    Notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms.IntheupperpanelofFig.1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-εprecision

    2.4.arylongitudes

    SincethesymplecticmapspreservetotalenergyandtotalangularmomentumofN-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeaguracyofnumericalintegrations,especiallyasameasureoftheposis,i.e.arylongitudes.Toestimatethenumeriarylongitudes,weperformedthefollowingprocedures.Wecomparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbuuracythanthemainintegrations.Forthispurpose,weperurateintegrationwithastepsizeof0.125d(1/64ofthemainintegrations)spanning3×105yr,startingwiththesameinitialconditionsasintheN−1integration.Weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’aryorbitalevolution.Next,wecomparethetestintegrationwiththemainintegration,N−1.Fortheperiodof3×105yr,weseeadifferenceinmeananomaliesoftheEarthbetweenthetwointegrationsof∼0.52°(inthecaseoftheN−1integration).Thisdifferencecanbeextrapolatedtothevalue∼8700°,about25rotationsofEarthafter5Gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecticmap.Similarly,thelongitudeerrorofPlutocanbeestimatedas∼12°.ThisvalueforPlutoismuchbetterthantheresultinKinoshita&Nakai(1996)wherethedifferenceisestimatedas∼60°

    3Numericalresults–I.Glanceattherawdata

    Inthissectionwebrieflyreviewthelong-tearyorbitalmotionthroughsomesnapshotsofrawnumericaldata.Theorsindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetstookplace

    3.1Generaldescriptionoftaryorbits

    First,webrieflylookatthegeneralcharacterofthelong-tearyorbits.Ourinterestherefocusesparticularlyontheinnerfosforwhichtheorbitaltime-scalesaremuchshorterthanthoseos.AswecanseeclearlyfromtheplanarorbitalconfigurationsshowninFigs2and3,orbitalpositionsoftsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,whichspansseveralGyr.Thesolidlinesdenotingthepresesliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d).Thisindicatesthatthroughouttheentireintegrationperiodthealmostregulaaryorbitalmotionremainnearlythesameastheyareatpresen

    Verticalviewoaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsN±1.Theaxesunitsareau.Thexy-planeissettotheinvariantplaneofSolarsystemtotalangularmomentum.(a)TheinitialpartofN+1(t=0to0.0547×109yr).(b)ThefinalpartofN+1(t=4.9339×108to4.9886×109yr).(c)TheinitialpartofN−1(t=0to−0.0547×109yr).(d)ThefinalpartofN−1(t=−3.9180×109to−3.9727×109yr).Ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5.47×107yr.Solidlinesineachpaneldenotethepresentorbitsofthefos(takenfromDE245)

    entricitiesandorbitalinclinationsfosintheinitialandfinalpartoftheintegrationN+1isshowninFig.4.Asexpected,thecharacteroftaryorbitalelementsdoesnotdiffersignificantlybetweentheinitialandfinalpartofeachintegration,atleastforVenus,EarthandMars.TheelementsofMercury,entricity,seemtochangetoasignificantextent.Thisispartlybecausetheorbitaltime-istheshos,whichleadstoamorerapidorbitalevolus;maybenearesttoinstability.ThisresultappearstobeinsomeagreementwithLaskar's(1994,1996)expectationsthatlargeandirregularvariatentricitiesandinclinationsofMercuryonatime-scaleofseveral109yr.However,theeffectofthepossibleinstabilityoftheorbitofMercurymaynotfatallyaffecttheglobalstabilarysystemowingtothesmallmassofMercury.Wewillmentionbrieflythelong-termorbitalevolutionofMercurylaterinSection4usinglow-passfilteredorbitalelements

    Theorbitalmotionosseemsrigorouslystableandquiteregularoverthistime-span(seealsoSection5)

    3.2Time–frequencymaps

    arymotionexhibitsverylong-termstabilitydefinedasthenon-existenceofcloseencounterevents,arydynamicscanchangetheoscillatoryperiodaaryorbitalmotiongraduallyoversuchlongtime-spans.Evensuchslightfluctuationsoforbitalvariationinthefrequencydomain,particularlyinthecaseofEarth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsolarinsolationvariation(cf.Berger198

    Togiveanoverviewofthelong-termchangeinaryorbitalmotion,weperformedmanyfastFouriertransformations(FFTs)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwo-dimensionaltime–frequencymaps.Thespecificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisorLaskar's(1990,1993)frequencyanalysis

    Dividethelow-passfilteredorbitaldataintomanyfragmentsofthesamelength.Thelengthofeachdatasegmentshouldbeamultipleof2inordertoapplytheFF

    Eachfragmentofthedatahasalargeoverlappingpart:forexample,whentheithdatabeginsfromt=tiandendsatt=ti+T,thenextdatasegmentrangesfromti+δT≤ti+δT+T,whereδT?T.WecontinuethisdivisionuntilwereachacertainnumberNbywhichtn+Treachesthetotalintegrationlength

    WeapplyanFFTtoeachofthedatafragments,andobtainnfrequencydiagrams

    Ineachfrequencydiagramobtainedabove,thestrengthofperiodicitycanbereplacedbyagrey-scale(orcolour)char

    Weperformthereplacement,andconnectallthegrey-scale(orcolour)chartsintoonegraphforeachintegration.Thehorizontalaxisofthesenewgraphsshouldbethetime,i.e.thestartingtimesofeachfragmentofdata(ti,wherei=1,…,n).Theverticalaxisrepresentstheperiod(orfrequency)oftheoscillationoforbitalelements

    WehaveadoptedanFFTbecauseofitsoverwhelmingspeed,sincetheamountofnuposedintoponentsisterriblyhuge(severaltensofGbytes)

    Atypicalexampleofthetime–frequencymapcreatedbytheaboveproceduresisshowninagrey-scalediagramasFig.5,whichshowsthevariationofpentricityandinclinationofEarthinN+2integration.InFig.5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit.WecanrecognizefromthismapthatthepentricityandinclinationofEarthonlychangesslightlyovertheentireperiodcoveredbytheN+2integration.Thisnearlyregulartrendisqualitativelythesameinotherintegratios,althoughtypicalfreqandelementbyelemen

    4.2Long-termexchangeoforbitalenergyandangularmomentum

    Wecalculateverylong-periodicvariationaryorbitalenergyandangularmomentumusingfilteredDelaunayelementsL,G,H.GandHareeqaryorbitalangularmomentumanditsponentperunitmass.LiaryorbitalenergyEperunitmassasE=−μ2/2L2.pletelylinear,theorbitalenergyandtheangularmomentumineachfrequencybinmustbeconstant.Non-larysystemcancauseanexchangeofenergyandangularmomentuminthefrequencydomain.Theamplitudeofthelowest-frequencyoscillationshouldincreaseifthesystemisunstableandbreaksdowngradually.However,suchasymptomofinstabilityisnotprominentinourlong-termintegrations

    InFig.7,thetotalorbitalenergyandangularmomentusareshownforintegrationN+2.Theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedasE-E0),totalangularmomentum(G-G0),andtheponent(H-H0)oscalculatedfromthelow-passfilteredDelaunayelements.E0,G0,H0denotetheinitialvaluesofeachquantity.Theabsolutedifferencefromtheinitialvaluesisplottedinthepanels.ThelowerthreepanelsineachfigureshowE-E0,G-G0andH-H0ofts.Thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthes

    &paringthevariationsofenergyandangularmomentus,itisapparentthattheamplitudesofthsaremuchsmallerthants:theamplitudesosaremuchlargerthanths.Thisdoesnotmeanthattheinnarysubsystemismorestablethantheouterone:thisissimplyaresultoftherelativesmallnessofthemassesofthefourterrestrialparedwiththoseofts.Anotherthingwenoticeiaeunstablemorerapidlythantheouteronebecauseofitsshorterorbitaltime-scales.Thiscanbeseeninthepanelsdenotedasinner4inFig.7wherethelonger-periodicandirregularoscillationsaremoreapparentthaninthepanelsdenotedastotal9.Actually,thefluctuationsintheinner4panelsaretoalargeextentasaresultoftheorbitalvariationoftheMercury.However,wecannotneglectthecontributionfromoths,aswewillseeinsubsequentsections

    4.4Long-termcouplingofseverapai

    Letusseesomeindividuaaryorbitalenergyandangularmomentumexpressedbythelow-passfilteredDelaunayelements.Figs10and11showlong-termevolutionoftheorbitaandtheangularmomentuminN+1andN−2integrations.Wensformapparentpairsintermsoforbitalenergyandangularmomentumexchange.Inparticular,VenusandEarthmakeatypicalpair.Inthefigures,theyshownegativecorrelationsinexchangeofenergyandpositivecorrelationsinexchangeofangularmomentum.Thenegativecorrelationinexchangeoforbitalenergysformacloseddynamicalsystemintermsoftheorbitalenergy.Thepositivecorrelationinexchangeofangularmomentumsaresimultaneouslyundercertainlong-termperturbations.CandidatesforperturbersareJupiterandSaturn.AlsoinFig.11,wecanseethatMarsshowsapositivecorrelationintheangularmomentumvariationtotheVenus–Earthsystem.MercuryexhibitscertainnegativecorrelationsintheangularmomentumversustheVenus–Earthsystem,whichseemstobeareactioncausedbytheconservationofangularmomentumintarysubsyste

    ItisnotclearatthemomentwhytheVenus–Earthpairexhibitsanegativecorrelationinenergyexchangeandapositivecorrelationinangularmomentumexchange.Wemaypossiblyexplainthisthroughobservingthegeneralfactthattherearenosarysemimajoraxesuptosecond-orderperturbationtheories(cf.Brouwer&Clemence1961;Boccaletti&o1998).Thiaryorbitalenergy(whichisdirectlyrelatedtothesemimajoraxisa)mightbemuchlessaffectesthanistheangularmomentumexchange(whichrelatestoe).Hence,entricitiesofVenusandEarthcanbedisturbedeasilybyJupiterandSaturn,whichresultsinapositivecorrelationintheangularmomentumexchange.Ontheotherhand,thesemimajoraxesofVenusandEartharelesslikelytobedisturbs.ThustheenergyexchangemaybelimitedonlywithintheVenus–Earthpair,whichresultsinanegativecorrelationintheexchangeoforbitalenergyinthepair

    Asfortarysubsystem,Jupiter–SaturnandUranus–Neptuneseemtomakedynamicalpairs.However,thestrengthoftheircouplingisnotasparedwiththatoftheVenus–Earthpair

    5±5×1010-yrintegraryorbits

    Sarymassesaremuchlargerthantarymasses,wetarysystemasarysystemintermsofthestudyofitsdynamicalstability.Hence,weaddedacoupleoftrialintegrationsthatspan±5×1010yr,includingonls(splusPluto).Theresultsexhibittherigorousstabilarysystemoverthislongtime-span.Orbitalconfigurations(Fig.12),entricitiesandinclinations(Fig.13)showthisverylong-termstabilityosinboththetimeandthefrequencydomains.Althoughwedonotshowmapshere,thetypicalfrequencyoftheorbitaloscillationofPlutoandsisalmostconstantduringtheseverylong-termintegrationperiods,whichisdemonstratedinthetime–frequencymapsonourwebpage

    Inthesetwointegrations,therelativenumericalerrorinthetotalenergywas∼10−6andthatofthetotalangularmomentumwas∼10−10

    5.1ResonancesintheNeptune–Plutosystem

    Kinoshita&Nakai(1996)integratearyorbitsover±5.5×109yr.TheyfoundthatfourmajorresonancesbetweenNeptuneandPlutoaremaintainedduringthewholeintegrationperiod,andthattheresonancesmaybethemaincausesofthestabilityoftheorbitofPluto.Themajorfourresonancesfoundinpreviousresearchareasfollows.Inthefollowingdescription,λdenotesthemeanlongitude,Ωisthelongitudeoftheascendingnodeandϖisthelongitudeofperihelion.SubscriptsPandNdenotePlutoandNeptune

    MeanmotionresonancebetweenNeptuneandPluto(3:2).Thecriticalargumentθ1=3λP−2λN−ϖPlibratesaround180°withanamplitudeofabout80°andalibrationperiodofabout2×104yr

    TheargumentofperihelionofPlutoωP=θ2=ϖP−ΩPlibratesaround90°withaperiodofabout3.8×106yr.ThedominantperiodicentricityandinclinationofPlutoaresynchronizedwiththelibrationofitsargumentofperihelion.ThisisanticipatedinthesecularperturbationtheoryconstructedbyKozai(1962)

    ThelongitudeofthenodeofPlutoreferredtothelongitudeofthenodeofNeptune,θ3=ΩP−ΩN,circulatesandtheperiodofthiscirculationisequaltotheperiodofθ2libration.Whenθ3becomeszero,i.e.thelongitudesofascendingnodesofNeptuneandPlutooverlap,theinclesmaximum,esminimumandtheargues90°.Whenθ3becomes180°,theinclesminimum,esmaximumandtheargues90°again.Williams&Benson(1971)anticipatedthistypeofresonance,laterconfirmedbyMilani,Nobili&Carpino(1989)

    Anargumentθ4=ϖP−ϖN+3(ΩP−ΩN)libratesaround180°withalongperiod,∼5.7×108yr

    Inournumericalintegrations,theresonances(i)–(iii)arewellmaintained,andvariationofthecriticalargumentsθ1,θ2,θ3remainsimilarduringthewholeintegrationperiod(Figs14–16).However,thefourthresonance(iv)appearstobedifferent:thecriticalargumentθ4alternateslibrationandcirculationovera1010-yrtime-scale(Fig.17).ThisisaninterestingfactthatKinoshita&Nakai's(1995,1996)shorterintegrationswerenotabletodisclose

    6Discussion

    Whatkindofdynamicalmechanismmaintainsthislong-terarysystem?Wecanimmediatelythinkoftwomajorfeaturesthatmayberesponsibleforthelong-termstability.First,thereseemtobenosignificantlower-orderresonances(meanmotionandsecular)betweenanypais.JupiterandSaturnareclosetoa5:2meanmotionresonance(thefamous‘greatinequality’),butnotjustintheresonancezone.Higher-orderresonancesarydynamicalmotion,buttheyarenotsostrongastodesarymotionwithinthelifetimeoftherealSolarsystem.Thesecondfeature,whichwethinkismoreimportantforthelong-terarysystem,isthedifferenceindynamicaldistancebetweenterrestarysubsystems(Ito&Tanikawa1999,2001).aryseparationsbythemutualHillradii(R_),separationsasaregreaterthan26RH,whereasthosarelessthan14RH.Thisdifferenceisdirectlyrelatedtothedifferencebetweendynamicalfeaturesofterrests.shavesmallermasses,shorterorbitalperiodsandwiderdynamicalseparation.Theyarestronglypertsthathavelargermasses,longerorbitalperiodsandnarrowerdynamicalseparation.sarenotperturbedbyanyothermassivebodies

    Thepresearysystemisstillbeingdisturbedbythes.However,thewideseparationandmutualinteractionamongtsrendersthedisturbanceineffective;thedegreeofdistursisO(eJ)(orderoentricityofJupiter),sincethedisturbancecsisaforcedoscillationhavinganamplitudeofO(eJ).entricity,forexampleO(eJ)∼0.05,isfarfromsufficienttoprovokeinstabilityintshavingsuchawideseparationas26RH.Thusweassumethatthepresentwidedynamicalseparationas(>26RH)isprobablyoneofthemostsignificantconditionsformaintainingthesarysystemovera109-yrtime-span.Ourdetailedanalysisoftherelationshipbetweendynamicaldisandtheinstabilitytime-scalearymotionisnowon-going

    AlthoughournumericalintegrationsspanthelifetimeoftheSolarsystem,thenumberofintegrationsisfarfromsufficienttofilltheinitialphasespace.Itisnecessarytoperformmoreandmorenumericalintegrationstoconfirmandexamineindetailthelong-terarydynamics

    ——以上文段引自Ito,T.&Tanikawa,K.Long-termintegrationsaaryorbitsinourSolarSystem.Mon.Not.R.Astron.Soc.336,483–500(2002)

    这只是作者君参考的一篇文章,关于太阳系的稳定性。

    还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《Nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。
本章结束
一定要记住丫丫电子书的网址:www.shuyy8.cc 第一时间欣赏《死在火星上》最新章节! 作者:天瑞说符所写的《死在火星上》为转载作品,死在火星上全部版权为原作者所有
①如果您发现本小说死在火星上最新章节,而丫丫电子书又没有更新,请联系我们更新,您的热心是对网站最大的支持。
②书友如发现死在火星上内容有与法律抵触之处,请向本站举报,我们将马上处理。
③本小说死在火星上仅代表作者个人的观点,与丫丫电子书的立场无关。
④如果您对死在火星上作品内容、版权等方面有质疑,或对本站有意见建议请发短信给管理员,感谢您的合作与支持!

死在火星上介绍:
我叫唐跃,我在火星上。
我刚刚看到地球炸了。