以下是文章内容:
Long-termintegrationsaaryorbitsinourSolarsystem
Abstrac
Wepresenttheresultsofverylong-termnumericaliaryorbitalmotionsover109-yrtime-spansincs.Aquickinspectionofournumericaldatarymotion,atleastinoursimpledynamicalmodel,seemstobequitestableevenoverthisverylongtime-span.Acloserlookatthelowest-frequencyoscillationsusingalow-passfiltershowsusthepotentiallydiffusivecharacterarymotion,especiallythatofMercury.ThentricityofMercuryinourintegrationsisqualitativelysimilartotheresultsfromJacquesLaskar'ssecularperturbationtheory(e.g.emax∼0.35over∼±4Gyr).However,therearenoapparentsecentricityorinclinationinanyorbitals,whichmayberevealedbystilllonger-termnumericalintegrations.Wehavealsoperformedacoupleoftrialintegrationsincludingmotionsosoverthedurationof±5×1010yr.TheresultindicatesthatthethreemajorresonancesintheNeptune–Plutosystemhavebeenmaintainedoverthe1011-yrtime-span
1Introduction
1.1Definitionoftheproblem
ThequestionofthestabilityofourSolarsystemhasbeendebatedoverseveralhundredyears,sincetheeraofNewton.Theproblemhasattractedmanyfamousmathematiciansovertheyearsandhasplayedacentralroleinthedevelopmentofnon-lineardynamicsandchaostheory.However,wedonotyethaveadefiniteanswertothequestionofwhetherourSolarsystemisstableornot.Thisispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenitisusedinrelationtarymotionintheSolarsystem.Actuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofourSolarsyste
Amongmanydefinitionsofstability,hereweadopttheHilldefinition(Gladman1993):actuallythisisnotadefinitionofstability,butofinstability.Wedingunstablewhenurssomewhereinthesystem,startingfromacertaininitialconfiguration(Chambers,Wetherill&Boss1996;Ito&Tanikawa1999).AsystemisdefinedasexperiencingacloseencounterwhentwobodiesapproachoneanotherwithinanareaofthelargerHillradius.Otherwisethesystemisdefinedasbeingstable.HenceforwardwarysystemisdynamicallystableifnocloseencounterhappensduringtheageofourSolarsystem,about±5Gyr.Incidentally,thisdefinitionmaybereplaceurrenceofanyorbitalcrossingbetweeneistakesplace.Thisisbecauseweknowfromexperiencethatanorbitalcrossingisverylikelytoleadtoacloaryandarysystems(Yoshinaga,Kokubo&Makino1999).OfcoursethisstatementcannotbesimplyappliedtosystemswithstableorbitalresonancessuchastheNeptune–Plutosyste
1.2Previousstudiesandaimsofthisresearch
Inadditiontothevaguenessoftheconceptofstability,sinourSolarsystemshowacharactertypicalofdynamicalchaos(Sussman&Wisdom1988,1992).Thecauseofthischaoticbehaviourisnowpartlyunderstoodasbeingaresultofresonanceoverlapping(Murray&Holman1999;Lecar,Franklin&Holman2001).However,itwouldrequireintegratingovearysystemsincsforaperiodcoveringseveral10Gyrtothoroughlyunderstandthelong-tearyorbits,sincechaoticdynamicalsystemsarecharacterizedbytheirstrongdependenceoninitialconditions
Fromthatpointofview,manyofthepreviouslong-termnumericalintegrationsincludedonls(Sussman&Wisdom1988;Kinoshita&Nakai1996).Thisisbecausetheorbitalperisaresomuchlongerthanthoseosthatitismucheasiertofollowthesystemforagivenintegrationperiod.Atpresent,thelongestnumericalintegrationspublishedinjournalsarethoseofDuncan&Lissauer(1998).Althoughtheirmaintargetwastheeffectofpost-main-sequencesolarmasslossontaryorbits,theyperformedmanyintegrationscoveringupto∼1011yroftheorbitalmotionsofs.TheinitialorbitalelemensarethesameasthoseofourSolarsysteminDuncan&Lissauer'spaper,buttheydecreasethemassoftheSungraduallyintheirnumericalexperiments.Thisisbecausetheyconsidertheeffectofpost-main-sequencesolarmasnsequently,theyfoundthatthecrossingtime-aryorbits,whichcanbeatypicalindicatoroftheinstabilitytime-scale,isquitesensitivetotherateofmassdecreaseoftheSun.WhenthemassoftheSunisclosetoitspresentvalue,sremainstableover1010yr,orperhapslonger.Duncan&Lissaueralsoperformedfoursimilarexperimentsontheorbitals(VenustoNeptune),whichcoveraspanof∼109yr.Theirexperisarenotprehensive,butitseemsthattsalsoremainstableduringtheintegrationperiod,maintainingalmostregularoscillations
Ontheotherhand,uratesemi-analyticalsecularperturbationtheory(Laskar1988),Laskarfindsthatlargeandirregularvariationentricitiesandinclinationsofts,especiallyofMercuryandMarsonatime-scaleofseveral109yr(Laskar1996).TheresultsofLaskar'ssecularperturbationtheoryshouldbeconfirmedandinvestigatedbyfullynumericalintegrations
Inthispaperwepresentpreliminaryresultsofsixlong-termnumericalintegrataryorbits,coveringaspanofseveral109yr,andoftwootherintegrationscoveringaspanof±5×1010yr.Thetotalelapsedtimeforallintegrationsismorethan5yr,usingseveraldedicatedPCsandworkstations.Oneofthefundamentalconclusionsofourlong-termintegrationsistharymotionseemstobestableintermsoftheHillstabilitymentionedabove,atleastoveratime-spanof±4Gyr.Actually,inournumericalintegrationsthesystemwasfarmorestablethanwhatisdefinedbytheHillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,aryorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,arymotionsarestochastic.Sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-termstabilityarymotion.Forreaderswhohavemorespecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofDelaunayelementsandangularmomentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations
InSection2webrieflyexplainourdynamicalmodel,numericalmethodandinitialconditionsusedinourintegrations.Section3isdevotedtoadescriptionofthequickresultsofthenumericalintegrations.Verylong-termstabilityarymotionisaarypositionsandorbitalelements.Aroughestimationofnumericalerrorsisalsogiven.Section4goesontoadiscussionofthelongest-tearyorbitsusingalow-passfilterandincludesadiscussionofangularmomentumdeficit.InSection5,wepresentasetofnumericalintegrationsfosthatspans±5×1010yr.InSection6wealsodiscussthelong-terarymotionanditspossiblecause
2Descriptionofthenumericalintegrations
(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)
2.3Numericalmethod
Weutilizeasecond-orderWisdom–Holmansymplecticmapasourmainintegrationmethod(Wisdom&Holman1991;Kinoshita,Yoshida&Nakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(Saha&Tremaine1992,1994)
Thestepsizeforthenumericalintegrationsis8dthroughoutallintegrats(N±1,2,3),whichisabout1/11oftheorbitalperiodo(Mercury).Asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrasinSussman&Wisdom(1988,7.2d)andSaha&Tremaine(1994,225/32d).Weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inoumulationofround-offerrorinputationprocesses.Inrelationtothis,Wisdom&Holman(1991)performednumericalintegrationsoaryorbitsusingthesymplecticmapwithastepsizeof400d,1/10.83oftheorbitalperiodofJupiter.Theirurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize.However,entricityofJupiter(∼0.05)ismuchsmallerthanthatofMercury(∼0.2),weneparetheseintegrationssimplyintermsofstepsizes
Intheintegrationos(F±),wefixedthestepsizeat400d
WeadoptGauss'fandgfunctionsinthesymplecticmaptogetherwiththethird-orderHalleymethod(Danby1992)asasolverforKeplerequations.ThenumberofmaximumiterationswesetinHalley'smethodis15,buttheyneverreachedthemaximuminanyofourintegrations
Theintervalofthedataoutputis200000d(∼547yr)forthecalculats(N±1,2,3),andabout8000000d(∼21903yr)fortheintegrationos(F±)
Althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwepletedallthecalculations.SeeSection4.1formoredetail
2.4Errorestimation
2.4.1Relativeerrorsintotalenergyandangularmomentum
Accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors.Theaveragedrelativeerrorsoftotalenergy(∼10−9)andoftotalangularmomentum(∼10−11)haveremainednearlyconstantthroughouttheintegrationperiod(Fig.1).Thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore
RelativenumericalerrorofthetotalangularmomentumδA/A0andthetotalenergyδE/E0inournumericalintegrationsN±1,2,3,whereδEandδAaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,andE0andA0aretheirinitialvalues.ThehorizontalunitisGyr
Notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms.IntheupperpanelofFig.1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-εprecision
2.4.arylongitudes
SincethesymplecticmapspreservetotalenergyandtotalangularmomentumofN-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeaguracyofnumericalintegrations,especiallyasameasureoftheposis,i.e.arylongitudes.Toestimatethenumeriarylongitudes,weperformedthefollowingprocedures.Wecomparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbuuracythanthemainintegrations.Forthispurpose,weperurateintegrationwithastepsizeof0.125d(1/64ofthemainintegrations)spanning3×105yr,startingwiththesameinitialconditionsasintheN−1integration.Weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’aryorbitalevolution.Next,wecomparethetestintegrationwiththemainintegration,N−1.Fortheperiodof3×105yr,weseeadifferenceinmeananomaliesoftheEarthbetweenthetwointegrationsof∼0.52°(inthecaseoftheN−1integration).Thisdifferencecanbeextrapolatedtothevalue∼8700°,about25rotationsofEarthafter5Gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecticmap.Similarly,thelongitudeerrorofPlutocanbeestimatedas∼12°.ThisvalueforPlutoismuchbetterthantheresultinKinoshita&Nakai(1996)wherethedifferenceisestimatedas∼60°
3Numericalresults–I.Glanceattherawdata
Inthissectionwebrieflyreviewthelong-tearyorbitalmotionthroughsomesnapshotsofrawnumericaldata.Theorsindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetstookplace
3.1Generaldescriptionoftaryorbits
First,webrieflylookatthegeneralcharacterofthelong-tearyorbits.Ourinterestherefocusesparticularlyontheinnerfosforwhichtheorbitaltime-scalesaremuchshorterthanthoseos.AswecanseeclearlyfromtheplanarorbitalconfigurationsshowninFigs2and3,orbitalpositionsoftsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,whichspansseveralGyr.Thesolidlinesdenotingthepresesliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d).Thisindicatesthatthroughouttheentireintegrationperiodthealmostregulaaryorbitalmotionremainnearlythesameastheyareatpresen
Verticalviewoaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsN±1.Theaxesunitsareau.Thexy-planeissettotheinvariantplaneofSolarsystemtotalangularmomentum.(a)TheinitialpartofN+1(t=0to0.0547×109yr).(b)ThefinalpartofN+1(t=4.9339×108to4.9886×109yr).(c)TheinitialpartofN−1(t=0to−0.0547×109yr).(d)ThefinalpartofN−1(t=−3.9180×109to−3.9727×109yr).Ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5.47×107yr.Solidlinesineachpaneldenotethepresentorbitsofthefos(takenfromDE245)
entricitiesandorbitalinclinationsfosintheinitialandfinalpartoftheintegrationN+1isshowninFig.4.Asexpected,thecharacteroftaryorbitalelementsdoesnotdiffersignificantlybetweentheinitialandfinalpartofeachintegration,atleastforVenus,EarthandMars.TheelementsofMercury,entricity,seemtochangetoasignificantextent.Thisispartlybecausetheorbitaltime-istheshos,whichleadstoamorerapidorbitalevolus;maybenearesttoinstability.ThisresultappearstobeinsomeagreementwithLaskar's(1994,1996)expectationsthatlargeandirregularvariatentricitiesandinclinationsofMercuryonatime-scaleofseveral109yr.However,theeffectofthepossibleinstabilityoftheorbitofMercurymaynotfatallyaffecttheglobalstabilarysystemowingtothesmallmassofMercury.Wewillmentionbrieflythelong-termorbitalevolutionofMercurylaterinSection4usinglow-passfilteredorbitalelements
Theorbitalmotionosseemsrigorouslystableandquiteregularoverthistime-span(seealsoSection5)
3.2Time–frequencymaps
arymotionexhibitsverylong-termstabilitydefinedasthenon-existenceofcloseencounterevents,arydynamicscanchangetheoscillatoryperiodaaryorbitalmotiongraduallyoversuchlongtime-spans.Evensuchslightfluctuationsoforbitalvariationinthefrequencydomain,particularlyinthecaseofEarth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsolarinsolationvariation(cf.Berger198
Togiveanoverviewofthelong-termchangeinaryorbitalmotion,weperformedmanyfastFouriertransformations(FFTs)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwo-dimensionaltime–frequencymaps.Thespecificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisorLaskar's(1990,1993)frequencyanalysis
Dividethelow-passfilteredorbitaldataintomanyfragmentsofthesamelength.Thelengthofeachdatasegmentshouldbeamultipleof2inordertoapplytheFF
Eachfragmentofthedatahasalargeoverlappingpart:forexample,whentheithdatabeginsfromt=tiandendsatt=ti+T,thenextdatasegmentrangesfromti+δT≤ti+δT+T,whereδT?T.WecontinuethisdivisionuntilwereachacertainnumberNbywhichtn+Treachesthetotalintegrationlength
WeapplyanFFTtoeachofthedatafragments,andobtainnfrequencydiagrams
Ineachfrequencydiagramobtainedabove,thestrengthofperiodicitycanbereplacedbyagrey-scale(orcolour)char
Weperformthereplacement,andconnectallthegrey-scale(orcolour)chartsintoonegraphforeachintegration.Thehorizontalaxisofthesenewgraphsshouldbethetime,i.e.thestartingtimesofeachfragmentofdata(ti,wherei=1,…,n).Theverticalaxisrepresentstheperiod(orfrequency)oftheoscillationoforbitalelements
WehaveadoptedanFFTbecauseofitsoverwhelmingspeed,sincetheamountofnuposedintoponentsisterriblyhuge(severaltensofGbytes)
Atypicalexampleofthetime–frequencymapcreatedbytheaboveproceduresisshowninagrey-scalediagramasFig.5,whichshowsthevariationofpentricityandinclinationofEarthinN+2integration.InFig.5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit.WecanrecognizefromthismapthatthepentricityandinclinationofEarthonlychangesslightlyovertheentireperiodcoveredbytheN+2integration.Thisnearlyregulartrendisqualitativelythesameinotherintegratios,althoughtypicalfreqandelementbyelemen
4.2Long-termexchangeoforbitalenergyandangularmomentum
Wecalculateverylong-periodicvariationaryorbitalenergyandangularmomentumusingfilteredDelaunayelementsL,G,H.GandHareeqaryorbitalangularmomentumanditsponentperunitmass.LiaryorbitalenergyEperunitmassasE=−μ2/2L2.pletelylinear,theorbitalenergyandtheangularmomentumineachfrequencybinmustbeconstant.Non-larysystemcancauseanexchangeofenergyandangularmomentuminthefrequencydomain.Theamplitudeofthelowest-frequencyoscillationshouldincreaseifthesystemisunstableandbreaksdowngradually.However,suchasymptomofinstabilityisnotprominentinourlong-termintegrations
InFig.7,thetotalorbitalenergyandangularmomentusareshownforintegrationN+2.Theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedasE-E0),totalangularmomentum(G-G0),andtheponent(H-H0)oscalculatedfromthelow-passfilteredDelaunayelements.E0,G0,H0denotetheinitialvaluesofeachquantity.Theabsolutedifferencefromtheinitialvaluesisplottedinthepanels.ThelowerthreepanelsineachfigureshowE-E0,G-G0andH-H0ofts.Thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthes
&paringthevariationsofenergyandangularmomentus,itisapparentthattheamplitudesofthsaremuchsmallerthants:theamplitudesosaremuchlargerthanths.Thisdoesnotmeanthattheinnarysubsystemismorestablethantheouterone:thisissimplyaresultoftherelativesmallnessofthemassesofthefourterrestrialparedwiththoseofts.Anotherthingwenoticeiaeunstablemorerapidlythantheouteronebecauseofitsshorterorbitaltime-scales.Thiscanbeseeninthepanelsdenotedasinner4inFig.7wherethelonger-periodicandirregularoscillationsaremoreapparentthaninthepanelsdenotedastotal9.Actually,thefluctuationsintheinner4panelsaretoalargeextentasaresultoftheorbitalvariationoftheMercury.However,wecannotneglectthecontributionfromoths,aswewillseeinsubsequentsections
4.4Long-termcouplingofseverapai
Letusseesomeindividuaaryorbitalenergyandangularmomentumexpressedbythelow-passfilteredDelaunayelements.Figs10and11showlong-termevolutionoftheorbitaandtheangularmomentuminN+1andN−2integrations.Wensformapparentpairsintermsoforbitalenergyandangularmomentumexchange.Inparticular,VenusandEarthmakeatypicalpair.Inthefigures,theyshownegativecorrelationsinexchangeofenergyandpositivecorrelationsinexchangeofangularmomentum.Thenegativecorrelationinexchangeoforbitalenergysformacloseddynamicalsystemintermsoftheorbitalenergy.Thepositivecorrelationinexchangeofangularmomentumsaresimultaneouslyundercertainlong-termperturbations.CandidatesforperturbersareJupiterandSaturn.AlsoinFig.11,wecanseethatMarsshowsapositivecorrelationintheangularmomentumvariationtotheVenus–Earthsystem.MercuryexhibitscertainnegativecorrelationsintheangularmomentumversustheVenus–Earthsystem,whichseemstobeareactioncausedbytheconservationofangularmomentumintarysubsyste
ItisnotclearatthemomentwhytheVenus–Earthpairexhibitsanegativecorrelationinenergyexchangeandapositivecorrelationinangularmomentumexchange.Wemaypossiblyexplainthisthroughobservingthegeneralfactthattherearenosarysemimajoraxesuptosecond-orderperturbationtheories(cf.Brouwer&Clemence1961;Boccaletti&o1998).Thiaryorbitalenergy(whichisdirectlyrelatedtothesemimajoraxisa)mightbemuchlessaffectesthanistheangularmomentumexchange(whichrelatestoe).Hence,entricitiesofVenusandEarthcanbedisturbedeasilybyJupiterandSaturn,whichresultsinapositivecorrelationintheangularmomentumexchange.Ontheotherhand,thesemimajoraxesofVenusandEartharelesslikelytobedisturbs.ThustheenergyexchangemaybelimitedonlywithintheVenus–Earthpair,whichresultsinanegativecorrelationintheexchangeoforbitalenergyinthepair
Asfortarysubsystem,Jupiter–SaturnandUranus–Neptuneseemtomakedynamicalpairs.However,thestrengthoftheircouplingisnotasparedwiththatoftheVenus–Earthpair
5±5×1010-yrintegraryorbits
Sarymassesaremuchlargerthantarymasses,wetarysystemasarysystemintermsofthestudyofitsdynamicalstability.Hence,weaddedacoupleoftrialintegrationsthatspan±5×1010yr,includingonls(splusPluto).Theresultsexhibittherigorousstabilarysystemoverthislongtime-span.Orbitalconfigurations(Fig.12),entricitiesandinclinations(Fig.13)showthisverylong-termstabilityosinboththetimeandthefrequencydomains.Althoughwedonotshowmapshere,thetypicalfrequencyoftheorbitaloscillationofPlutoandsisalmostconstantduringtheseverylong-termintegrationperiods,whichisdemonstratedinthetime–frequencymapsonourwebpage
Inthesetwointegrations,therelativenumericalerrorinthetotalenergywas∼10−6andthatofthetotalangularmomentumwas∼10−10
5.1ResonancesintheNeptune–Plutosystem
Kinoshita&Nakai(1996)integratearyorbitsover±5.5×109yr.TheyfoundthatfourmajorresonancesbetweenNeptuneandPlutoaremaintainedduringthewholeintegrationperiod,andthattheresonancesmaybethemaincausesofthestabilityoftheorbitofPluto.Themajorfourresonancesfoundinpreviousresearchareasfollows.Inthefollowingdescription,λdenotesthemeanlongitude,Ωisthelongitudeoftheascendingnodeandϖisthelongitudeofperihelion.SubscriptsPandNdenotePlutoandNeptune
MeanmotionresonancebetweenNeptuneandPluto(3:2).Thecriticalargumentθ1=3λP−2λN−ϖPlibratesaround180°withanamplitudeofabout80°andalibrationperiodofabout2×104yr
TheargumentofperihelionofPlutoωP=θ2=ϖP−ΩPlibratesaround90°withaperiodofabout3.8×106yr.ThedominantperiodicentricityandinclinationofPlutoaresynchronizedwiththelibrationofitsargumentofperihelion.ThisisanticipatedinthesecularperturbationtheoryconstructedbyKozai(1962)
ThelongitudeofthenodeofPlutoreferredtothelongitudeofthenodeofNeptune,θ3=ΩP−ΩN,circulatesandtheperiodofthiscirculationisequaltotheperiodofθ2libration.Whenθ3becomeszero,i.e.thelongitudesofascendingnodesofNeptuneandPlutooverlap,theinclesmaximum,esminimumandtheargues90°.Whenθ3becomes180°,theinclesminimum,esmaximumandtheargues90°again.Williams&Benson(1971)anticipatedthistypeofresonance,laterconfirmedbyMilani,Nobili&Carpino(1989)
Anargumentθ4=ϖP−ϖN+3(ΩP−ΩN)libratesaround180°withalongperiod,∼5.7×108yr
Inournumericalintegrations,theresonances(i)–(iii)arewellmaintained,andvariationofthecriticalargumentsθ1,θ2,θ3remainsimilarduringthewholeintegrationperiod(Figs14–16).However,thefourthresonance(iv)appearstobedifferent:thecriticalargumentθ4alternateslibrationandcirculationovera1010-yrtime-scale(Fig.17).ThisisaninterestingfactthatKinoshita&Nakai's(1995,1996)shorterintegrationswerenotabletodisclose
6Discussion
Whatkindofdynamicalmechanismmaintainsthislong-terarysystem?Wecanimmediatelythinkoftwomajorfeaturesthatmayberesponsibleforthelong-termstability.First,thereseemtobenosignificantlower-orderresonances(meanmotionandsecular)betweenanypais.JupiterandSaturnareclosetoa5:2meanmotionresonance(thefamous‘greatinequality’),butnotjustintheresonancezone.Higher-orderresonancesarydynamicalmotion,buttheyarenotsostrongastodesarymotionwithinthelifetimeoftherealSolarsystem.Thesecondfeature,whichwethinkismoreimportantforthelong-terarysystem,isthedifferenceindynamicaldistancebetweenterrestarysubsystems(Ito&Tanikawa1999,2001).aryseparationsbythemutualHillradii(R_),separationsasaregreaterthan26RH,whereasthosarelessthan14RH.Thisdifferenceisdirectlyrelatedtothedifferencebetweendynamicalfeaturesofterrests.shavesmallermasses,shorterorbitalperiodsandwiderdynamicalseparation.Theyarestronglypertsthathavelargermasses,longerorbitalperiodsandnarrowerdynamicalseparation.sarenotperturbedbyanyothermassivebodies
Thepresearysystemisstillbeingdisturbedbythes.However,thewideseparationandmutualinteractionamongtsrendersthedisturbanceineffective;thedegreeofdistursisO(eJ)(orderoentricityofJupiter),sincethedisturbancecsisaforcedoscillationhavinganamplitudeofO(eJ).entricity,forexampleO(eJ)∼0.05,isfarfromsufficienttoprovokeinstabilityintshavingsuchawideseparationas26RH.Thusweassumethatthepresentwidedynamicalseparationas(>26RH)isprobablyoneofthemostsignificantconditionsformaintainingthesarysystemovera109-yrtime-span.Ourdetailedanalysisoftherelationshipbetweendynamicaldisandtheinstabilitytime-scalearymotionisnowon-going
AlthoughournumericalintegrationsspanthelifetimeoftheSolarsystem,thenumberofintegrationsisfarfromsufficienttofilltheinitialphasespace.Itisnecessarytoperformmoreandmorenumericalintegrationstoconfirmandexamineindetailthelong-terarydynamics
——以上文段引自Ito,T.&Tanikawa,K.Long-termintegrationsaaryorbitsinourSolarSystem.Mon.Not.R.Astron.Soc.336,483–500(2002)
这只是作者君参考的一篇文章,关于太阳系的稳定性。
还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《Nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。
本章结束